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Abstract. In this paper we propose a class of substitution rales that generate quasiperiodic
chains sharing their typical properties with the quasiperiodic Fibonacci chain. For a subclass
we explicitly construct the atomic surface. Moreover, scaling properties of the energy spectrum
are discussed in relation to the dynamics of trace maps.

1. Introduction

One-dimensional (1D) quasiperiodic Schridinger equations have been studied by many
authors in recent years [1-24]. In particular, much attention has been focused on
quasiperiodic potentials that are derived from the Fibonacci sequence, providing a kind
of prototype model for studying quasiperiodic systems.

- Starting from the Fibonacci sequence, some authors have proposed generalizations,
mainly by generalizing the substitution rule that is characteristic for the quasiperiodic
Fibonacci sequence [12-22]. However, in doing so, one should be aware of the
consequences. As the main motivation for studying the Fibonacci sequence is its
quasiperiodicity, it seems most appropriate to study in the first place generalizations of
Fibonacei sequences which are also quasiperiodic.

In this paper quasiperiodic chains are considered that are related to a spectal
class of substitution rule, preserving most properties that are typical for the Fibonacci
sequence. Having given the motivation for our choice of generalizations, we discuss the
scaling properties of the energy spectra of such quasiperiodic chains in a tight-binding
approximation, using a trace-map analysis.

Before discussing the various aspects of generalized Fibonacci sequences in detail, some
preliminaries are recafled first.”

Let S = {a, b} be an alphabet of two letters. Then any finite sequence composed of the
elements of S is called a word, and we denote by §* the collection of all possible words.
The empty word ¢ is defined by

EW = we = w (1)
for any w € S*. A morphism
T:5 > § 2)
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is defined by the property
T{urn) = v{(u){ua) 3

for any two words iy, u2 € §*. Note that any morphism over $* is completely determined
by 7(a) and T(b). Moreover we adopt the following notation:

=@ v)e(a)=u (b)) =v. (4)

We use the morphisms over §* as substitution rules that provide a systematic means of
inflating the word a.

Let w be'a waord, then we denote by |w| the length of w, and by Jw|, (resp. |w]p) the
number of letters o (resp. b) appearing in w. Let the morphism 7 define a substitution rule,
then the substitution matrix of 7 is defined by

o lt@le I}
M "(lr(a)ib lr(bnb)' ©)

If the substitution T is primitive [25], i.c. all entries of MY are strictly positive for
some N > 1, z¥(a) converges towards an infinite word x in the limit N — oo if 7(a)
begins with q. This infinite word satisfles

x=t(x). )]

A quasiperiodic physical structure corresponding to the word x of (6) can be constructed
by regarding the two letters a, b as atoms of type & and b. In order to study the electronic
energy spectrum of such a structure, we consider a tight-binding model with discretized
Schrédinger equation

lpm-;-l + Y + VW = EWy. (7)

Here m labels the lattice site on which the atom {(z or &) is situated, V;, is the site potential
(V; or V) and W, is the electronic wavefunction with energy E. The nature of the energy
spectrum for various substitution rules has been discussed by several authors [1-7,11—
14,17-21).

For quasiperiodic but not periodic limit structures, the energy spectrum cannot be
analysed directly. If we consider the finite sequence achieved after N iterations, T (a), as
the unit cell of a periodic infinite structure, then the spectrum for suecessive iterations can be
compared in order to achieve information about the limit strecture. The approximate energy
spectra are found using a well known transfer-matrix technique (ef [31). The Schrédinger
equation (7) can be written in terms of transfer matrices as
E-V, -1
3 o ] : ®
I¥f the unit cell contains g atoms, then ®p, and Opyy = Thyg 1 0--- 0 7,0, differ by a
constant phase factor, independent of m. A consequence is that an energy E is allowed if
and only if

IOy = ®m+1 T = [

ITr(Tigo1 ©... 0 T < 2 (9)

where Tr(A) denotes the trace of A. The transfer matrix of a chain w, of atoms a and &,
congists of a corresponding product of transfer matrices, 7,,. For a given substitution rule
T, define

X = Tr{Teray) ¥ = Tr(Trep)) 2k = Tr(Teean) - (10)
Then [26] Xpt1, Vi1, Zev1 € ZIXk, Yr, 2:]. We obtain the k-independent trace map
(x'!y'szf)=F‘t(xa }’,Z)- . (11)
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A very important question is of course, what the approximate spectra (based on (9)) tell
us about the incommensurate limit spectrum. For the step potential tight-binding model (7)
with

Vo for 1—-wgt <1
V. =V =
" b +mo) {Vl for O0<t<l—-w (12)

it has been proved that the limit spectrum is the set {E|xz(E) is bounded as &k — co} for
every Vo, V1 € R and irrational @ and any x € R [27-30].

Let us now regard some typical properties of the well known Fibonacci chain. The
substitution rule, leading to the Fibonacci chain is given by

o = (ab, ). ' (13)

This substitution rule is invertible with inverse o~! = (b, 5~'a) and the determinant of the
substitution matrix M, is —1.

The diffraction spectrum of the Fibonacci chain contains Bragg peaks that can be labelled
by two indices (two-dimensional Z-module}, i.e. the chain is quasiperiodic of rank-2 [31].
Moreover, the chain has an average lattice, i.e. a limiting average spacing and a bounded
modulation with respect to this average lattice.

We are lead to investigate chains that are fixed points of substitution rules z that are
invertible and have det(M;) = 4=1. As Peyriére [32] has pointed out, this leads vs to an
understanding of the Fibonacci sequence in the context of the free group F» = (a, b) (see
also [33, 34]). The Fibonacci substitution rule can be regarded as an automorphism of this
free group, and the proposed generalization leads to a consideration of any © € Aut(F>)
that is physically meaningful, i.e. any T € Aut(/) that does not contain inverse letters.
We call this set, the set of invertible substitutions Inv(5*). In section 2 this class will be
discussed in detail.

A substitution rule studied extensively is the rule v = (a™b", a) [12-22]. Two different
classes can be distinguished. The class with = 1 has det{M,;) = —1. The chain
is quasiperiodic with Z-module of rank-2. For the other class with r > 1 we have
det(M.) < —1 and T & Aut(F) (hence T & Inv(5*)). In literature, the infinite chain
built by T = (@™b", a) is sometimes called a generalized Fibonacci chain [15, 17]. In our
opinion, this term is only appropriate if n = 1, since only then the typical properties of the
Fibonacci chain are recovered. ‘

In table 1 a comparison is made between the different types of substitution rules and
the properties of the chains they generate. One of the typical properties of the Fibonacci
sequence is that it can be constructed by the so-called method of cut and project [35]. This

Table 1. Comparison of properiies of chains that are generated by various types of substitution
rule t with substitution matrix M. (with detM, 5= 0). The properties labeled with # are
conjectures, Examples confirming these conjectures can be found in e.g. [31].

Fibonacci = € Inv(S™®) t & lnv(S*)
Pisot property yes T yes " yes 1o
det M -1 +1 +1  potE] not %l
Rank Z module 2 2 2 fe's) -
Average lattice and bounded madulation yes yes yes  yes no
Cut-and-project (extension of atomic surface Ad = 1)  yes yes® no* oot no

Trace map preserves volume and invariant A (cf (i%)) yes yes RCG  NO no
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Figure 1. The method of cut-and-project for the Fibonacci chain and the construction of the
atomic surface. The window is achieved by shifting the square unit cell along the eigenvector
of the substitution matrix having the highest cigenvalue, coiticiding with the physical space V.
The projection of the unit cell along the other eigenvector, V7, is the atomic surface of length
Ag. All lattice points within the window represent a walk on this square lattice: each step in
the horizontal direction is an @ and each step in the vertical direction a b. The projection of all
lattice points within the window on the external space Vg yields 2 quasiperiodic sequence of
Tong and short intervals, corresponding to a, b, respectively. Their relative length is prescribed
by construction,

method involves a projection of points on a square lattice to a line (the so-called physical
space) with an irrational slope (the golden mean in the case of the Fibonacci chain). As
a rule only points in a certain neighbourhood of this line, the window, are projected. The
physical space lies in the direction of the eigenvector belonging to the largest eigenvalue of
the substitution matrix. In figure 1, this method is illustrated. Regarding all the points on
the square lattice that participate in this construction, one can also consider the projection
of these points to the space that lies in the direction of the other eigenvector, the so-called
internal space. The closure of this projection is called the atomic surface (for an illustration,
see again figure 1).

By convention, usually the lattice constant of the square lattice is chosen such that the
total length of the atomic surface (i.e. the sum of the lengths of all parts if it is disconnected)
equals one [31]. For a discussion of other, but equivalent, definitions of the atomic surface
we refer the reader to [31]. Now denote by &4 and 6_ the upper and lower extremities of the
full atomic surface, and by A@ = 8, — 4_ its extension. In the case of the Fibonacci chain
the atomic surface consists of only one line element of length one. In fact a quasiperiodic
chain can be obtained by the method of cut-and-project if and only if the atomic surface
consists of one line segmentf.

Bombieri and Taylor [36] have shown that any infinite chain obtained via a substitution
rule possessing the Pisot property} is contained in a chain that can be obtained via the

§ We prefer to reserve the term ‘cut-and-project’ to the cases in which there is an ordinary window within which
each peint is projected to the physical space (as in [36]). This excludes the cases in which the atomic surface is
a fractal object.

1 The substitution mle t has the Pisot property if M. has one eigenvalue bigger than one, and the other eigenvalue
of absolute value smaller than one. The Pisot property is sufficient for 7 to generate a chain with an average lattice
and a bounded modulation with respect to this average lattice.
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method of cut-and-project as discussed above. In this case the atomic surface does not have
to be a single line segment but may consist of (many) disconnected parts. However, the
total length of (all parts) of the atomic surface is always equal to one [31].

It is an appealing question whether every quasiperiodic chain that is a fixed point of a
physically meaningful v € Aut(/%), ie. T € Inv(§*), can be constructed via the method of
cut-and-project. We conjecture that this question has a positive answer. In our support, in
section 3 a large family of invertible substitution rules is presented for which we succeeded
to prove this relation.

The trace. map associated with the Fibonacei substitution rule is given by

X ="' Z -
E, : y = x (14)
Z = xz—y.

It is volume preserving and foliates its three-dimensional phase space with invariant surfaces
X2+ y 422 —xyz —4 =1 [32-34,37).

One other aspect of the energy spectrum of the Fibonacei chain is its self-similar (multi-
fractal} structure [7, 9]. The scaling behaviour of this spectrum can be understood in relation
to dynamical features of the trace map. In section 4 this relation is discussed in more detail.

2. Invertible substitution rules

In this section, some general properties of substitution rules are discussed that are in the
autornorphism class, and the quasiperiodic chains they generate.

It is well known [33, 34, 38] that the group of automorphisms Aut(7) may be generated
by the following morphisms:

e=Ga B=@bD  y=(abb). (15)

However, for our purpose of building words in 5% we are only interested in those
automorphisms 7 that do not involve inverse letters. These automorphisms form a semi-
group of invertible substitutions, Inv(S*). It is generated by three morphisms {39]

Inv($*) = {&, o, @) (16)
where « is as defined in (15), ¢ is the Fibonacci substitution rule (13) and
= (ba, a). {an
Because
' det(My} = det(M,) = det(M,) = —1 (18)

for any v € Inv(S*), we have detM; = *£1 and the Fourier transform of the diffraction
pattern of the infinite chain generated by v consists of a two-dimensional Z-module, i.e.
the chain is quasiperiodic of rank-2}. Other well known properties are related to the trace
map. Let F; be the trace map associated with the substitution rufe 7, and let

Mx,y,2) =x" Ly 4t —xyz -4 (19)
then there is a polynomial @, in x, y, z with integer coefficients such that [32]
AoF, =0, ). , (20)

T In case v is a substitution rule that possesses the Pisot property, but detM, # 1, one speaks of a limit
quasiperiodic chain (of rank-ca) [31].
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Moreover,
teAu(F) & O, =1 2D

i.e. the trace map foliates the R* with surfaces that are constants of the motion if and only
if the substitution rule is invertible. F; is also volume preserving.

After having identified the subset of physically meaningful substitutions in Aut(F)
as the set of invertible substitutions Inv(S*), the relevant set can be reduced even further
considering locally isomorphic} chains as being equivalent.

Theorem. Lét 71,72 € Inv(S*) and let M, and M., respectively, be their substitution
matrices. Then the infinite word generated by 7; is locally isomorphic to the infinite word
generated by 7, if and only if My, = M,,.

The proof of the ‘if’ part of the above theorem can be found in [39]. The local
isomorphism follows from the observation that if My = M,, there exists a word w & §*
such that

T{a) = wn(@w™ 71 (b) = wn(Bw™" (22)
or such that
(@) = w ' n(@w 7(p) = wln®w. (23)

The proof of the ‘only if® part will be given elsewhere [40].

Physical properties of interest that are invariant under local isomorphisms (such as the
energy spectrum [18, 23]) of quasiperiodic chains generated by a substitution rule in Inv(S*)
are classified by their substitution matrix, rather than by the specific substitution rule. In
that respect it is important to notice that for any 2 x 2 substitution matrix M with positive
integer entries and determinant 1, there is a T € {w, o) such that M = M; [39]. Hence, we
conclude that if we are interested in properties that are invariant under local isomorphisms,
we only need to consider substitution rules of the form

ctodoo™lo---o0M oo™ 24

where ry,n; = 0and ng, ..., 751 2 L

In this section we have shown that many properties that are typical for the Fibonacei
chain, are in fact typical for the class of chains that are generated by an invertible substitution
7 € Inv(§*). This Jeads us to conjecture that most of the physically relevant features that
have been observed in the study of Fibonacci sequences, will persist throughout the entire
class of quasiperiodic chains over § that are generated by invertible substitutions.

In the next section, to support our conjecture, we focus on a special class of invertible
substitution rules to illustrate the persistence of the property to generate a quasiperiodic
chain with the method of cut and project. In section 4 this same class will be discussed in
relation to the scaling properties of the energy spectrum.

3. A special class of invertible substitutions

As indicated in the previous sections, the invertible substitution is a natural generalization of
the Fibonacci substitution rule, conserving most of its typical features. In fact we conjecture
that important features such as the method of cut-and-project are applicable if and only if
the substitution rule is invertible (see also table 1).

1 Let x and v be two infinite sequences over S, Then we say that 1 and v are locally isomorphic if any subsequence
of u (or its mirror image) is also a subsequence of » and vice versa.



Generalized Fibonacci chains oo 3695

Therefore, we will consider a special class of invertible substitutions
= (goa) oot. (25)
This class contains the Fibonacci substitution rule z{ as well as the one-parameter family of
substitution rules 1] suggested by Kalugin et @/ [12]. It benefits from the special relations

(cox)ay=a (o ca)(B) = a"b (26)
and
ot @) = fi lo* (B = fii 27)

where f; are the Fibonacci numbers with the initial conditions f_; = fp=1and f. =0
for all £  —2, defined by the recurrent formula foup = frug + o
Thus the substitution matrix of z{ is

_{ frm1+nfiz fimztrfios
My = ( Sr—2 fe3 ) ’ (28.)

In the next subsection it will be shown that the extension of the atomic surface of a
chain generated by the substitution rule zi¥ always has length one, i.e. A8 = 1, implying
that such a chain can be obtained by the method of cut-and-project (31].

3.1. The atomic surface

In this subsection we will discuss the proof of the fact that the extension of the atomic
surface of a quasiperiodic chain generated by the invertible substitution 7 is equal to one,
for any n > 0 and £k > 1, implying that such a chain can be obtained by the method of
cut-and-project. For some details of the proof, we will refer to [41] in which an analogous
problem has been discussed. Let us first define some useful notations.

We have a substitution rule 7 on the alphabet § = {a, b} with fixed point x(7). We
denote by n, and ny, respectively, the number of the letters & and & in the first » letters of
x(t). Moreover, we define
do(r):=1lm 22 4y(x):= lim & 29)

=00 R

n—c0 R

which are, respectively, the frequencies of the Ietters ¢ and b appearing in x (7). Evidently,
d,(T) + dp(7) = 1. Furthermore let u(t) 1= d,(7)/dp(x), then

dp(T)(1 + p(7)) = du(7) +dp(T) = 1. (30)

Considering the substitution matrix M;, let A(z) and A(z) be its eigenvalues with
A(T) > |A(D)|. It is well known [25] that A(z) > 1 and (d, (1), dp(z))7 is an eigenvector
of M belonging to A(t). (To simplify the notation in the rest of this section, if no confusion
arises, we will omit the label T if possible.)

With the notations as above, we define a sequence {1,},>; as follows:

Uy = ny, —ndy . ) (31
Then from (30} it is easy to check that '

up = dp(ng — nppt) . (32)
We can also write )

by = TR _ (33)

1+p
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The atomic surface of the chain generated by the substitution rule 7, which we denote by
A(T), is defined as

A@) = {un(Dhhipt ' (34)

where the horizontal bar denotes the topological closure of a set.
Let 64.(A} i= SUD,y #n and 6_(A4) := infi>1 &y, then the extension of 4 is defined as

AB(A) 1= 0.(A) —6_(A4). (35)
Our purpose is to prove that A9 (A(z])) = 1. The proof consists of five successive steps.

(i) Because of the special relations (26), we can obtain the finite chain 7' (a) from the chain
o*(a) in the following way: replace a and b, respectively, by a and a"b in the chain o*(a).
(i) We will determine &;(A) and 6_(A) by a similar technique to that in [41], which
requires A 2> 0. For any n > 0 this requires det(M)) = 1 and hence & should be even.
For the case of k being odd we can take (zf')%, which gives the same infinite chain as 77,
but det(M;py2) = 1, thus & > 0.

iii) Let
Bf)(r(a)) = SUp U (36)
lsmgl? (a)]
0t (a)) = (nf | thn (37)
then
04(A(D) = lim 6(c) (38)
b-(A() = lim 6™ (z) (39)
and hence
AS(AM) = lim (87 () — 62 (@)]. (40)

If we know 94(_’:’ and 8, we can obtain inductively 9_(;‘) and 6% by a method described in
[41]. i
(iv) We consider first . In this case

_{ faar fu-
M2 = ( a2 fres ) ' *1)
(Notice that we have [c*(@)| = f£.)
In addition,
Aoy = Tng u(e™) =7 “42)

where 7, is the golden mean (+/5 + 1)/2.
It is not difficult to see that
0P0™) = fus— (s — Dile™ @)
0W(0%) = famr— 1 — Fa2it(c®).
(v) In view of (i), by using the facts |o*(a)| = fi, |0*®) = fim1, k 2 1, a simple
calculation leads to

My = ( Jaee1 +0fae frea + a3 ) ) @)
* Jar-2 . Sok-a
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Its characteristic equation is
22 — (fart + for-3 + nfaua)h +1=0. , (45)
Hence the largest eigenvalue of My reads
For-r + S+ nfua + v (Pt + frrs + nfu—n)® — 4
> .

On the other hand, since (d,(z3,), db(rfk))T is the eigenvector of A(zZ}), we find with
relation (30) that :

S8 (25 + faradp(5) = ATy (v3) 47
which yields that

AGE) =

(46)

A(T3) — far-s
Jok—2 ’

Since for any n = 0, & > | we have
Friemt + Fores +Afara — 2 < (Frem1 + far-a + o)t = 4 < fom1 + for—z + nfau—z

u(tg) = (48)

49
it follows from (46) that
Jok—1 + fams +nfaues — 1 < Az} < for—1 + foez +1foe (50)
which yields
J2k—1 l A(Tg) — fae—z | farm
+n— < < +n. (1))
Sae—2 Jor2 Sar—2 Jor—2
On the other hand, it is readily seen that
1 Joae—1
I+ < Lo D, (52)
fu—z  fa-z .
We thus obtain by (48) and (51) that
n+1l<pEi)<n+2. . (53)

In view of (i) again, from the inequality (53) we see that if we replace @ and b by a
and @b, respectively, in 0%*(a), then 8.(A(t})) and 6_(A(z%,)) will be obtained in the
same position as in the case of o%*, up to a translation n. More precisely, by (43) we have

{ 0°(z}) = fama +nfor—s — (faems — D) (54)
0D() = fu-1 — 1 nfaz — Freat(7f).
By using (54) it follows from an analogous argument to that used in [41] that

AB(A(Ty)) = 04 (A(T3) — 6-(A(T) : (33)

R SN 7Y VRN S S
= TRl @~ @Gl e (56)
_ 20 - 00 @)) &

(1 + p{fIALR) —1)
Moreover, from (34) we have
0Pz — 08 (xh) = (farez — Fares + Dia(ef) — (oot — Fakez — 14+ 1 (fopz — frks))
(58)
= (for—a + D(rg) — (fos — 1+ 1fr-a) . (59)
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We thus have
A(T)) [(forma + Dpe(h) — (Frrs — 1+ nfu—s)] ]
(14 pCrgpD(A(z) — 1)
Substituting (48) into (60), if we wish to prove that A8(A(z3,)) = 1, it suffices to prove
that
(1 n A(Tg) — for—3

AG(A(z3)) = (60)

Ja—2

)cncr;k) ~1)

= A [t V2L (1| 6

By using the recurrent relation fiia = fi+1 + fi and a known result about the Fibonacci
numbers for fox—z+ I = fZ_;, the equality (61) can be rewritten as

Foua(AA @Y — (Fremt + frtms + nf-2) A(Z) + 1) = 0. (62)
Ifk=1, then fop_4 =0 and (62) holds. If & > 1, then for_s % 0 and (62) is reduced to
A2(TRY — (fapet + Fox—s + 0fn—2) A(Th) +1=0. (63)

Notice that (63) is exactly the characteristic equation of the matrix M, (45). Hence we find
that (61) is always satisfied, completing the proof that the extension of the atomic surface
AB(A(t3,)) = 1, implying that A8(A(%)) = 1 for all k and . a

4. Scaling properties of the energy spectrum

For every substitution rule T we find a sequence of approximate periodic structures with
corresponding energy spectra of the Schridinger equation (7). In this section we will
study the scaling behaviour of these approximate spectra, considering various invertible
substitutions as well as a non-invertible one.

For a given substitution 7 and approximation number I, for each energy E the vector
T(E) 1= Flopyro(E) is determined by successive application of the trace maps F, and F,
occurring in Fpy = F:;T- The first companent of this vector determines whether an energy
E occurs in the spectrum of the /th (periodic) approximation to the infinite quasiperiodic
chain generated by the substitution 17}, starting with a single a. That is, the first component
[x(E} < 2 (cf (9)). The initial conditions for this iteration process are

To(E) =(E = Vo, E ~ V}, (E -~ V)(E - V) — 2) (64

i.e. a line parametrized by E on the invariant surface A = (V, — V;)%. In all explicit
calculations we have set V, = =V, = 0.6.

In figuwre 2 the energy spectum for the first few (periodic) approximations of
quasiperiodic chains using the substitution rules ¥, 7! and ©} are depicted. Note that
z? is the Fibonacci substitution rule,

In the Fibonacci case, it was observed [3, 5] that the substitution rule induces a band
splitting that repeats itself at smaller scales in higher-order approximations. In figure 2 we
observe a similar mechanism also in the case of other invertible substitutions.

With the above observation, it is natural to do a scaling analysis of the central band. In
studies of Fibonacei spectra, non-uniform scaling was found, giving rise to a limit spectrum
that is a Cantor set with multifractal properties [4,9,11].

t For all 71, 72 € Aut(F,) we have [26, 32] My, o My, = Mo and Fy, o Fyy = Fypar,. Hence any trace map F;
(with = € Inv(5*)) can be written as a compaosition of the trace maps Fy, Fp, and F,, where Fy is the Fibonacei
trace map (14), Fp = Fy,and Fp : (x,3,2) & (3, %, 2).
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d ' ! ' ' 1 Figure 2. The energy spectrum of (7) for the first
few periodic approximations to a quasiperiodic chain
4 . . . generated by the invertible substitutions (a) =P, () =/

and (c) o}, Va =-V3 =0.6.

We will focus on the scaling behaviour of central band, i.e. we will compare the width
of the central band in successive approximate spectra. In table 2 we present the scaling
parameter «, i.e. the ratio of the width of the central bands at level [ and { + &, as obtained
numerically for different substitution rules 7. A step size § > 1 is sometimes required
to circumvent specira that have no central band (e.g. ¥, 772, z2) or to ensure convergent

scaling (e.g. 7}).

Table 2. Scaling parameter ¢ of the centre band in approximate spectra generated by invertible
substitution rules 7' (of (25)) for various values of £ and #. « is the ratio of the width of the
centre bands of approximations [ and / 4 §. Max [ indicates the highest approximation used in
obtaining the scaling results.

kE n 8§ Mx! «

1 0 3 13 5.618 £ 0.007

1 1 1 13 2,702 + 0.002

1 2 3 6- 804 £ 0.5

i 3 1 6 4.8702 X 0.0004
2 1 2 6 27.55 £ 0.02

2 2 3 @ CYRIE ]
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The scaling of the central band of the Fibonacci spectra was found to be related to the
largest eigenvalue of the Jacobian matrix of Ff in (a, 0,0), which lies on a 6-cycle of F,
[5]. Note in this respect that volume preservation together with the invariant A (ef (19))
implies the eigenvalue spectrum to be of the form {1, i, £~} (A > 0 moreover implies that
u e R).

In [5], Kohmoto and Qono argue that the central band appears as the result of the
intersection of the stable manifold of the 6-cycle with the initial line 79(E). To explain the
other results of table 2, consider the set

A= {2y, Yo, Zar Bg, Y—a> Z_a} (65)

where &, = (g, 0,0}, ¥, = (0, 2, 0), ete. Considering the invariant surface of the trace map
) = (Vo = V3)* = a® — 4 > 0, these points are situated on the central part of the surface
right between its four cones (for a picture of this surface see, for example, [3]).

The set A consists of periodic orbits of F; for any 7 € Inv{S*) because F;(A) = A
as can easily be verified from the fact that F, and F, map 4 onto itself. These periodic
orbits may be written as permutation cycles, e.g,

Fe(A) = (oY Z-aT—gY-oZ2) - (66)

Now, let us investigate the eigenvalues of the periodic orbits of A and compare them
to scaling faciors & of table 2.
Fr wr special class of invertible substitutions 7 (25) we find

fn (A) = @aVaZ-aPoaVY-22a)* © (ZaYoZ-s Y-a) (67)
giving rise to 24 different periodic orbit structures within 4. In table 3 we present the explicit
orbits and their largest eigenvalues for the substitutions considered in table 2. Comparing

table 2 and table 3 we find that in all cases the observed scaling coincides with the largest
eigenvalue of a periodic orbit in A.

Table 3. Pericdic orbits of trace maps of invertible substitutions 7 (cf (25)) their perods p,
their largest eigenvalue (a) for general a, the value of § as used in table 2, and |u# ()| for

= 5,44 for compariscn with ¢ in table 2 (with V, = =V}, = 0.6). Only periodic otbits within
the set 4 (cf (65)) are considered,

kon Fp(A P @ 5 WP (/SA)
1 0 (®aYoZaPoal-aZs) 6 8atsl4 /(8% 1P =1 3 5618
1 (@aYaZoala) 4 2% —da+14/(2a* =422 1 1)2 -1 1 2.96073
(ZaZwa) 2 %[a2 +24+(@2+2)2 = 4] 1 27024
1 2 (2¥YaZaT—glmeZ_q) 6  3[16a® — 56a° +49a* +2 B 3 8031
+/(16a® — 56a° 4 49a* + 2)2 — 4)
I 3 (%ale) (@—e¥—a) 2 4(3a* —8a®+2+/(3a7 - 8a2 + 22-4] 1 687311
(g} (2—p) 1 ~—a-— a +1 1 4.37010
2 1 (Zp2os) (g 2 ip-at-J@-ay¥ -4 2 27557
Wal—a) 2 1 —2q2 — ,/(1 —242)% — 2 19.709
2 2 (Raeale) @-aZay-a) 3 02 —daf+2-— ,/(9a4 —4ab 1 2)2—4] 3 375611

In table 3, note that § is not always equal to the period of the cycle that is related to
the scaling factor e, although one would expect them to be equal from the stable manifold
argument, The reason for this is to be found in the symmetry properties of the periodic
orbits. In the cases tf, 7], and zZ, where & equals half the period of the determining cycle,
the period-two orbits of Fé. appear to be symmetric with respect to a symmetry of F2
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causing local dynamics near the two points to be similar and hence giving rise to a uniform
scaling behaviour.

In most cases the value of § needed to circumvent spectra without central bands
automatically gives convergent scaling behaviour. Only in the case of 7, this does not
happen: one is tempted 1o take § = 1 becavse in all approximations there is an odd number
of bands and hence a central band. However, the determining period-two orbit is not
symumetric. As a result, if we take § = 1 we find @ oscillating arcund the root of the largest
eigenvalue. Taking 8 = 2 avoids the oscillation and we find & to be in correspondence to
the eigenvalue. In the appendix the symmetry properties of the trace maps are discussed in
more detail, in particular in relation to this problem.

Considering the initial conditions ro(£} and the points contained in .A, we find that z_,
is closest to 7o(E) (in fact even near r(()). Hence one would expect the orbit containing
Z_g to determine the scaling of the central band. The results in table 2 and tabie 3 support
this line of reasoning.

In the earlier work of Wijnands [19], quasiperiodic chains generated by juxtaposition
rules

Sier = SET1 84 So=> 51 =ab" (68)

with n = 0, 1, 2, 3 were studied. With different initial conditions (Sp = &, §; = a), these
Jjuxtaposition rules are equivalent to the invertible substitution rules t7'. The energy spectrum
in successive approximations generated by the juxtapositution rules (68) is governed by the
same trace maps as in the case of the substitution rules rf, but (if » > 0) with initial
conditions ro(E) different from (64). In the case n = 1, 2, 3 the scaling behaviour was also
found to correspond exactly to the largest eigenvalue of periodic orbits in A. However, in
the cases b = 1 and n = 3 the scaling of the central band is dominated by the eigenvalue
of a 2-cycle and, respectively, a 4-cycle, i.e. not the fixed point, respectively, the 2-cycle
as found for the substitution rules (cf table 2 and table 3).

We would like the reader to note that it is not clear to us why precisely some orbit in
A (and not some other periodic orbit) determines the scaling behaviour of the central band.
The argoment in [5] is mainly heuristic to our opinion. Nevertheless, it is remarkable that
in all cases the scaling behaviour can be explained with periodic orbits in the set A, A
profound discussion of this phenomenon is beyond the scope of the present paper. Note that
in a slightly different mode] [8] the scaling behaviour of the central band can be explained
rigorously because the initial condition r9(0) coincides with the point z_,.

In order to make a comparison between scaling properties of the spectrum of
quasiperiodic chains generated by invertible and non-invertible substitutionst, we calculated
the energy specirum of chains generated by the non-invertible substitution rule

& =(a’b, ba) (6%)
wherz & is a so-calied Fibonacci-squared substitution [31] since
M; =M, - M, (70

with ¢ denoting the Fibonacci substitution rule. Because of (70), & obviously possesses the
Pisot property and has detM; = 1. Therefore it generates a quasiperiodic chain of rank-2.

The atomic surface of the quasiperiodic chain generated by & has a fractal atomic surface
with A8 > 1 [31]. Thus this chain cannot be generated with the method of cut-and-project.

1 For a comparison with scaling propesties of chains, generated by = substitution rule, that ate neither periodic
nor quasiperiodic see, for example, [10],
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Figure 3. The energy spectrum for the first few periodic approximations to a quasiperiodic
chain generated by the non-invertible substitution & (2) (¢f (69))-
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Figure 4. Total bandwidth (B) against number of atomns N in the ugit cell for the invertible
substitutions ¥, z}, 7} and the non-invertible substitution &.
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In figure 3 we have plotted the energy spectrum for the first few approximations &(a).
One immediately observes a striking difference: in the case of the non-invertible substitution
the width of the energy bands tends to zero much more quickly than in the case of the
invertible substitutions in figure 2 (particularly in comparison to the case of 7). Moreover,
the typical large gaps in the Fibonacci spectrum are absent in the spectrum of &.

In figure 4 the total bandwidth B, ie. the Lebesgue measure of the energy spectrum,
is set out on a double logarithmic scale against the number of atoms N of the unit cell in
the periodic approximation. In the case of the invertible substitutions =, 7} and 7} we find
that B ~ N—# with § = 0.347 4 0.005. The non-invertible substitution & clearly shows a
different behaviour.

An explanation for this difference can be found on the level of the trace maps. The
speed with which B approaches zero is roughly speaking determined by the escape rate of
points on the inner domain of the phase space of the trace map, and can be interpreted as a
diffusion coefficient. As mentioned before, the dynamics of the trace maps of non-invertible
substitutions differs in many respects from the dynamics of invertible substitutions. Whereas
in the case of invertible substitutions the diffusion process, governed by the hyperbolic points
on the invariant surface, is found to be uniform, the (in general) dissipative dynamics of
trace maps of non-invertible substitutions induces a different diffusion process, giving rise
to different scaling behaviour.

5. Summary and concluding remarks

In this paper the construction of quasiperiodic chains using substitution rules has been
discussed. It was found that chains generated by invertible substitution rules share their
typical properties with the well studied Fibonacci chain. In particular, we conjecture that
quasiperiodic chains generated by a substitution rule can be obtained also with the method of
cut-and-project if and only if the substitution rule is invertible. This conjecture is supported
by an explicit calculation of the atomic surface for a two-parameter family of invertible
substitutions.

Following the energy spectrum of a quasiperiodic tight-binding Hamiltonian we also
find that the spectra of quasiperiodic chains generated by invertible substitutions behave
Fibonacci-like. In particular, the scaling of the central band can be explained by the largest
eigenvaine of the periodic point (0,0, —a) and the total bandwidth B shows universal
scaling behaviour. Quasiperiodic chains generated by non-invertible substitution reles show
a rather different behaviour. This is for instance illustrated by the scaling properties of the
spectrum. The differences between spectra of quasipericdic chains generated by invertible
and non-invertible substitutions can be inferred ditectly from the specira-determiring trace
maps. In the invertible case the maps preserve the volume and a one-parameter family of
surfaces, giving rise to two-dimensional measure-preserving dynamics. However, in the
non-invertible case the trace maps are truly three-dimensional and (in general) dissipative.
One consequence of this difference is picely illustrated in figure 4. These findings are
confirmed by an independent study of Janssen [42].

Many other properties of the Fibonacci chain were studied over the years. which we
have not discussed in this paper. For example, the energy spectrum of the tight-binding
Fibonacci Hamiltonian has been shown to form a purely singular continuous Cantor set of
Lebesque measure zero [28—30]. Another property which has been studied extensively is the
nature of the electronic wavefunctions, in particular whether the wavefuctions are extended,
localized or whether they have a different nature [7, 8, 11]. For these and all other properties
of physical interest we conjecture their typical behaviour to extend throughout the class of
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quasiperiodic chains generated by invertible substitutions. Quasiperiodic chains generated
by non-invertible substitutions have a different nature.
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Appendix. Symmetry properties of trace maps of invertible substitutions

The trace map F, of an invertible substitution z € Inv(S*) is a dynamical system in R>. Such
maps are volume preserving and moreover have a constant of the motion A (cf equation (19))
giving rise to a foliation of the phase space. In case A > 0, as in the tight-binding problem,
the constant of motion is a non-compact surface with tetrahedral symmetry consisting of
four cones connected to each other via a centre part, In this appendix some symmetry
properties of the dynamics of the trace maps of invertible substitutions are pointed out, in
particular for the special class introduced in section 3, and we discuss some consequences
for the scaling behaviour of the centre band of the energy spectrum.

Let us first introduce the concept of I::-symmetry in dynamical systemsi. Consider a
dynamical system which is an invertible map L : & + L, then we say that an invertible
map U :Q—> Nisa k- -symmetry of L if & is the smallest positive integer such that [43]

UolLfoU ' =LEF. (Al)

1-symmetries are usually called symmetries. In fact, E-symmetries of L are symmetries of
LE, but not vice-versa. i

On the set of all symmetries of L* (the symmetry group of LE), denoted Gj, we define
amap ¢ : G > Gp that acts on M € G as

G(My=LoMoL™. (A2)

As such, k-symmetries of L correspond to k-cycles of ¢.

It has been realized recently [43,44] that trace maps of substitutions © € Aut(F3)
possess k-symmetries. Let us consider these Ic-symmetnes of trace maps of invertible
substitutions T € Inv($*). In particular, let us focus on k-symmetries of trace maps of
invertible substitutions that are elements of the group P, of polynomial maps in R* with
integer coefficients that leave the surface A (19) invariant. In [34] it has been shown that
this group, independent of the value of A, is given by

IP). = (Fo'a Fas F,B» Ixy, Iyz: ny: Pyz) (As)

where F,, F, and Fjg are the trace maps of the corresponding substitutions in Aut(F),
with F, and F, as given in section 4 and Fg:(x,y,z) = (x,y,xy —2). In (A3), I
denotes the reflection in the line { = j = 0 and Fj; is the reflection in the plane { = j, with
i,j €{x,y,2} and i # j. In fact {Izy, Py, Py;) is the tetrahedral group.

+ To avold confusion we use & instead of & in the symmetry property because k already oceurs as a label of the
special class of invertible svbstitutions,
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Let = {Iy, I;). Then, T is a E—symmetry group of F;, for any v € Inv(S5*), where
ke {1,2, 3} (cf 143,44]). In particular, ¢, induces a permutation on I, among its three
non-trivial elements. Writing the action of ¢z, on I in a cycle notation we cbtain

¢F, (B = (Ley Ly Iro) BFpe (B) = (InyIzz) (A4)
vielding

$rp(E) = (Inbale)* o Uy L))" .. . (A5)
Because the group X is closed under ¢Frg it is called a k-symmetry group of Frp. Here,

F=3ifk+0(mod3)and niseven, £=2if nisodd, and £ =1 if k£ = 0 (mod 3) and
n is even.
In table Al we give for the same values of # and & as used in section 4, ¢z fE(E) and

ng (A), with & as in table 2.

Table Al. The action of ¢z, on the group ¥ and the orbits of F&, (A).
i

(24} (ga) (2a) (@-a) (¥-a) (23}
(2a) (42} (2a) (T—a) W-a) (2=a}

Eon dn (D 8 Fh
1 0 ([xylyzfxz.) 3 (@e®—y) Wal-a) (Taz_a)
I I (Iyzzxz) (Ixy) I (ZeZmg) @a¥Ya) (BmaYma)
1 2 ny[yz]xz) 3 (Ta®—g) (YaVY-a) (Zaz—g)
13 (Nyle) Uny) 1 (Ba¥a) (T-aV-a) (24) {Z—0) )
2 1 (]I)‘ [yz) (Lez) 1 (TeZ-q) (T—aZa)} YaY-a)

2

3

22 (Iyle)y)

From table A1 we find in the case of z{ and z} that the scaling determining two-orbits of
Fff are symmetric. Moreover, their two points @ and y are related through a symmetry M,
i.e. Mz =1vy. Hence, the dynamics near « is equivalent to the dynamics near y: in case we
follow such a symmetric periodic orbit, we find uniform scaling behaviour. In the case of
1:2' we find the determining two-orbit z,z_, (or £_,2,) to be asymmetric. This asymmetry
causes the oscillatory behaviour in the scaling constant that is found if one congiders § =1
in stead of § = 2.

Note that in this appendix we confined the discussion to £-symmetries, although trace
maps are well known to also possess reversing k-symmetries (cf [43, 44)). Although many
trace maps of invertible substitutions are reversible, there seem to be ones that possess
no reversing symmetries at all [44]. However, the physical relevance of these reversing
symmetries, e.g. for the energy spectrum, are as yet unclear.
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