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Abstract. In this paper we propose a class of substitution rules that generate quasiperiodic 
chains sharing their t yp id  properties with the quasiperiodic Fibonacci chain. For a subclass 
we explicitly con&vct the atomic surface. Moreover, scaling properties of the energy specmm 
are discussed in relation to the dynamics of trace maps. 

1. Introduction 

One-dimensional (ID) quasiperiodic Schriidinger equations have been studied by many 
authors in recent years [I-241. In particular, much attention has been focused on 
quasiperiodic potentials that are derived from the Fibonacci sequence, providing a kind 
of prototype model for studying quasiperiodic systems. 

Starting from the Fibonacci sequence, some authors have proposed generalizations, 
mainly by generalizing the substitution rule that is characteristic for the quasiperiodic 
Fibonacci sequence [12-22]. However, in doing so, one should be aware of the 
consequences. As the main motivation for studying the Fibonacci sequence is its 
quasiperiodicity, it seems most appropriate to study in the first place generalizations of 
Fibonacci sequences which are also quasiperiodic. 

In this paper quasiperiodic chains are considered that are related to a special 
class of substitution rule, preserving most properties that are typical for the Fibonacci 
sequence. Having given the motivation for our choice of generalizations, we discuss the 
scaling properties of the energy spectra of such quasiperiodic chains in a tight-binding 
approximation, using a tracemap analysis. 

Before discussing the various aspects of generalized Fibonacci sequences in detail, some 
preliminaries are recalled first. 

Let S = (U, b]  be an alphabet of two letters. Then any finite sequence composed of the 
elements of S is called a word, and we denote by S* the collection of a l l  possible words. 
The empty word E is defined by 

EW = W E  = W (1) 

s : S H S *  (2) 

for any w E S'. A morphism 
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is defined by the property 

7 ( U I U Z )  = 7(uI)r(ud (3) 
for any two words UI, uz E S'. Note that any morphism over S* is completely determined 
by t ( a )  and 7(b ) .  Moreover we adopt the following notation: 

(4) 
We use the morphisms over S" as substitution rules that provide a systematic means of 

inflating the word a.  
Let w be'a word, then we denote by Jwl the length of w, and by JwJa (resp. IWlb) the 

number of letters a (resp. b) appearing in w. Let the morphism 7 define a substitution rule, 
then the substitution matrix of 7 is defined by 

7 = (U, U) + C(Q) = U r (b)  = U .  

If the substitution s is primitive [Z], i.e. all entries of M f  are strictly positive for 
some N p 1, r N ( a )  converges towards an infinite word x in the limit N + m if t ( a )  
begins with a.  This infinite word satisfies 

x = 7 ( x ) .  (6) 
A quasiperiodic physical structure corresponding to the word x of (6) can be constructed 
by regarding the two letters a, 6 as atoms of type a and b. In order to study the electronic 
energy spectrum of such a structure,' we consider a tight-binding model with discretized 
Schrodinger equation 

Ym+i + %-I + Vm'X" = EYm.  (7) 
Here m labels the lattice site on which the atom (a or 6) is situated, V, is the site potential 
(V, or vb) and Y,,, is the electronic wavefunction with energy E .  The nature of the energy 
spectrum for various substitution rules bas been discussed by several authors [I-7,ll- 
14, 17-21]. 

For quasiperiodic but not periodic limit structures, the energy spectrum cannot be 
analysed duectly. If we consider the finite sequence achieved after N iterations, t N ( a ) ,  as 
the unit cell of a periodic infinite structure, then the spectrum for successive iterations can be 
compared in order to achieve information about the limit structure. The approximate energy 
spectra are found using a well known transfer-matrix technique (cf [3]). The Schriidinger 
equation (7) can be written in terms of transfer matrices as 

0 '  I E-V, -1 TmOm = 

If the unit cell contains q atoms, then 0, and = Tm+q-l o . . . o T,0, differ by a 
constant phase factor, independent of m. A consequence is that an energy E is allowed if 
and only if 

ITI(T,+~-~ 0.. . o Tm)I f 2 (9) 
where Tr(A) denotes the trace of A. The transfer matrix of a chain w, of atoms a and b, 
consists of a corresponding product of transfer matrices, T,,. For a given substitution rule 
t, define 

X k  = Tr(Tzqa)) Yk = Tr(T+(b)) Zk = Tr(&qab)). (10) 

(z', y', 2') = F A X ,  y .  2 ) .  (1 1) 

Then [261 & + I ,  yk+l, Zk+] E z [ X k ,  yk, Z k ] .  We obtain the k-independent trace map 
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A very important question is of course, what the approximate spectra (based on (9)) tell 
US about the incommensurate limit spectrum. For the step potential tight-binding model (7) 
with 

V, for l - o ( r i l  I VI for O < ' t < I - o  
v, = V ( x  + mw) = 

it has been proved that the limit spectrum is the set (Elxk(E)  is bounded as k -+ 00) for 
every V,, VI E Iw and irrational OJ and any x E R [27-301. 

Let us now regard some typical properties of the well known Fibonacci chain. The 
substitution rule, leading to the Fibonacci chain is given by 

U = (ab, a). (13) 

This substitution rule is invertible with inverse U-' = (b, b-'a) and the determinant of the 
substitution matrix MO is -1. 

The diffraction spectrum of the Fibonacci chain contains B r a g  peaks that can be labelled 
by two indices (two-dimensional %-module), i.e. the chain is.quasiperiodic of rank-2 [31]. 
Moreover, the chain has an average lattice, i.e. a limiting average spacing and a bounded 
modulation with respect to this average lattice. 

We are lead to investigate chains that are fixed points of substitution rules r that are 
invertible and have det(M,) = i l .  As Peyriere [32] has pointed out, this leads us to an 
understanding of the Fibonacci sequence in the context of the free group F2 = (a ,  b) (see 
also [33, 341). The Fibonacci substitution rule can be regarded as an automorphism of this 
free group, and the proposed generalization leads to a consideration of any T E Aut(&) 
that is physically meaningful, i.e. any s E Aut(&) that does not contain inverse letters. 
We call this set, the set of invertible substitutions Inv(S). In section 2 this class will be 
discussed in detail. 

A substitution rule studied extensively is the rule r = (ambn, U )  [12-221. Two different 
classes can be~distinguished. The class with n = 1 has det(M,) = -1. The chain 
is quasiperiodic with %-module of rank-2. For the other class with n > 1 we have 
det(M,) c -1 and r $' Aut(&) (hence T Inv(S')). In literature, the infinite chain 
built by T = (a'",,, a) is sometimes called a generalized Fibonacci chain [15,17]. In our 
opinion, this term is only appropriate if n = 1, since only then the typical properties of the 
Fibonacci chain are recovered. 

In table 1 a comparison is made between the different types of substitution rules and 
the properties of the chains they generate. One of the typical properties of the Fibonacci 
sequence is that it can be constructed by the so-called method of cut and project [35]. This 

Table 1. Comparison of propemes of chains thal are genented by vanous typcs of substitudoo 
mlc r ailh substitution molrix M, (with drtM, # 0). The propenies labelled wilh # are 
conjectures. Examples confirming lhese conjecturer can b? found in e.g. [311. 

Fibonacci r E l n v ( F )  r $ Inv(s ' )  

h o t  property Yes yes w "0 

dei M, - I  *I  !cl notk1 n o t f l  
Rank 3 modulc 2 2 2 c a  - 
Avenge lvtice and bounded modulation Yes Yes yes yes no 
Cut-and-project (exlension of moMc rurfve A0 = 1) yes yes* no" no' no 
Tnct map preserver volume and in\arimt ). (cf (19)) yes Yes no no no 
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Figure 1. The method of cutmd-project for the Fibonacci chain and the construction of the 
atomic surface. The window is achieved by shifting the square unit cell dong the eigenvector 
of the substitution m&x having the highest eigenvalue, coinciding with the physical space VE. 
The projection of the unit cell dong the other eigenvector, Vr, is the atomic surface of length 
AO, All lattice points within the window represent a walk on this square lattice: each step in 
the horizontal direction is an a and each step in the vefical direction a b. The projection of all 
lattice points within the window on the external space VE yields a quasiperiodic sequence of 
long and shori intervals, corresponding to a, b, respectively. Their relative length is prescribed 
by construction. 

method involves a projection of points on a square lattice to a l i e  (the so-called physical 
space) with an irrational slope (the golden mean in the case of the Fibonacci chain). As 
a rule only points in a certain neighbourhood of this line, the window, are projected. The 
physical space lies in the direction of the eigenvector belonging to the largest eigenvalue of 
the substitution matrix. In figure 1, this method is illustrated. Regarding all the points on 
the square lattice that pmicipate in this construction, one can also consider the projection 
of these points to the space that lies in the direction of the other eigenvector, the so-called 
internal space. The closure of this projection is called the atomic surface (for an illustration, 
see  again figure 1). 

By convention, usually the lattice constant of the square lattice is chosen such that the 
total length of the atomic surface (i.e. the sum of the lengths of all parts if it is disconnected) 
equals one [31J For a discussion of other, but equivalent, definitions of the atomic surface 
we refer the reader to [31]. Now denote by B+ and 8- the upper and lower extremities of the 
full atomic surface, and by AB = 0, - 8- its extension. In the case of the Fibonacci chain 
the atomic surface consists of only one line element of length one. In fact a quasiperiodic 
chain can be obtained by the method of cut-and-project if and only if the atomic surface 
consists of one line segmentt. 

Bombieri and Taylor [36] have shown that any infinite chain obtained via a substitution 
rule possessing the Pisot property$ is contained in a chain that can be obtained via the 

t We prefer to reserve the term 'cut-and-project' to the cases in  which there is an ordinary window within which 
each woint i s  rrroiected to the whvsicd soace (as in 13611. This excludes the cases in which the atomic surface is . .  . . . .~ 
a fractal object. 
$ The substitution N k  r has the Pisot pmperty if M, has one eigenvalue bigger than one, and the ocher einenvalue 
of absolute value smaller than one. The Riot propq is sufficient for r to generate a chain with an averah lattice 
and a bounded modulation with respect to this average lattice. 
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method of cut-and-project as discussed above. In this case the atomic surface does not have 
to be a single line segment but may consist of (many) disconnected parts. However, the 
total length of (all parts) of the atomic surface is always equal to one [31]. 

It is an appealing question whether every quasiperiodic chain that is a fixed point of a 
physically meaningful t E Aut(&), i.e. t E In@*), can be constructed via the method of 
cut-and-project. We conjecture that this question has a positive answer. In our support, in 
section 3 a large family of invertible substitution rules is presented for which we succeeded 
to prove this relation. 

The trace. map associated with the Fibonacci substitution rule is given by 

Z 
F, : [ :' z ' x  (14) 

z' = x z - y .  

It is volume preserving and foliates its three-dimensional phase space with invariant surfaces 
x z  + y z  + zz - xyz - 4 = A [32-34,371. 

One other aspect of the energy spectrum of the Fibonacci chain is its self-similar (multi- 
fractal) structure [7,9]. The scaling behaviour of this spectrum can be understood in relation 
to dynamical features of the trace map. In section 4 this relation is discussed in more detail. 

2. Invertible substitution rules 

In thii section, some general properties of substitution rules are discussed that are in the 
automorphism class, and the quasiperiodic chains they generate. 

It is well known [33,34,38] that the group of automorphisms Aut(F2) may be generated 
by the following morphisms: 

a = (b, a )  B = (a ,  b-') y = (ab, b-') . ( 1 3  

However, for our purpose of building words in S*, we are only interested in those 
automorphisms t that do not involve inverse letters. These automorphisms form a semi- 
group of invertible substitutions, Inv(S'). It is generated by three morphisms [39] 

Inv(S*) = (a, U, v,) (16) 

where a is as defined in (15), U is the Fibonacci substitution rule (13) and 

v, = (ba, a ) .  (17) 

det(M,) = det(M,,) = det(M,) = -1 

Because 

(18) 

for any t E Inv(S*), we have detM, = rkl and the Fourier transform of the diffraction 
pattern of the infinite chain generated by t consists of a two-dimensional E-module, i.e. 
the chain is quasiperiodic of rank-2t. Other well known properties are related to the trace 
map. Let F7 be the trace map associated with the substitution rule t, and let 

A(x, Y. Z) = xZ + yZ,+ - X Y Z  - 4 

A o FT = Qz. A .  

(19) 

(20) 

then there is a polynomial Q ,  in x ,  y, z with integer coefficients such that [32] 

t In case r is a substitution rule that possesses the Pisot propmy, but detM, # + I ,  one speaks of a Limit 
quasiperiodic chain (of rank-CO) [311. 
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Moreover, 

r E Aut(&) + Q, = 1 (21) 
i.e. the trace map foliates the R3 with surfaces that are constants of the motion if and only 
if the substitution rule is invertible. Fr is also volume preserving. 

After having identified the subset of physically meaningful substitutions in Aut(&) 
as the set of invertible substitutions Inv(S*), the relevant set can be reduced even further 
considering locally isomorphict chains as being equivalent. 

Theorem Let r, ,  rz E Inv(S') and let Mi, and Mz2, respectively, be their substitution 
matrices. Then the infinite word generated by q is locally isomorphic to the infinite word 
generated by r2 if and only if M,, = Mr,. 

The proof of the 'if part of the above theorem can be found in [39]. The local 
isomorphism follows from the observation that if Mr, = Ma there exists a word w E S' 
such that 

q ( a )  = wq(a)w-' q ( b )  = wrz(b)w-' (22) 

q(a) = w-'r2(a)w q ( b )  = w- 'q (b )w .  (23) 

or such that 

The proof of the 'only if part will be given elsewhere [a]. 
Physical properties of interest that are invariant under local isomorphisms (such as the 

energy spectrum [18,23]) of quasiperiodic chains generated by a substitution rule in Inv(S*) 
are classified by their substitution matrix, rather than by the specific substitution rule. In 
that respect it is important to notice that for any 2 x 2 substitution matrix M with positive 
integer entries and determinant &I, there is a r E (a, a) such that M = M, [39]. Hence, we 
conclude that if we are interested in properties that are invariant under local isomorphisms, 
we only need to consider substitution  le^ of the form 

u"'oaoa"~-'oor~..o,u"'oa 0 8 1  (24) 
where nl,  nk 3 0 and nz, . . . ,n+l 3 1. 

In this section we have shown that many properties that are typical for the Fibonacci 
chain, are in fact typical for the class of chains that are generated by an invertible substitution 
r E Inv(S*). This leads us to conjecture that most of the physically relevant features that 
have been observed in the study of Fibonacci sequences, will persist throughout the entire 
class of quasiperiodic chains over S that are generated by invertible substitutions. 

In the next section, to support our conjecture, we focus on a special class of invertible 
substitution rules to illustrate the persistence of the property to generate a quasiperiodic 
chain with the method of cut and project In section 4 this same class will be discussed in 
relation to the scaling properties of the energy spectrum. 

3. A special class of invertible substitutions 

As indicated in the previous sections, the invertible substitution is a natural generalization of 
the Fibonacci substitution rule, conserving most of its typical features. In fact we conjecture 
that important features such as the method of cut-and-project are applicable if and only if 
the substitution rule is invertible (see also table 1). 
t Let U and U be hvo infinite sequences over S. Then we say that Y and v are locally isomqhic if any subsequence 
of U (or its minor image) is also a subsequence of U and vice vems 
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Therefore, we will consider a special class of invertible substitutions 

(25) 
r ~ = ( u o c u ) ~ o u  k . 

This class contains the Fibonacci substitution rule rp as well as the one-parameter family of 
substitution rules r;. suggested by Kalugin eta1 [121. It benefits from the special relations 

(U o a)"(a) = a (U o a)"(b) = a"b (26) 

luk(a)l = f k  b k ( b ) l ~ =  f k - I  (27) 
where f k  are the Fibonacci numbers with the initial conditions f-I = fo = 1 and fk = 0 
for all k < -2, defined by the recurrent formula fn+2 = fn+,  + fn. 

and 

Thus the substitution matrix of r; is 

In the next subsection it will be shown that the extension of the atomic surface of a 
chain generated by the substitution rule rf always has length one, i.e. A0 = 1, implying 
that such a chain can be obtained by the method of cut-and-project [31]. 

3.1. The atomic su$ace 

In this subsection we will discuss the proof of the fact that the extension of the atomic 
surface of a quasiperiodic chain generated by the invertible substitution r; is equal to one, 
for any n 2 0 and k 3 1, implying that such a chain can be obtained by the method of 
cut-and-project. For some details of the proof, we will refer to [41] in which an analogous 
problem has been discussed. Let us first define some useful notations. 

We have a substitution rule r on the alphabet S = (a, 6 )  with fixed point x ( r ) .  We 
denote by n, and nb, respectively, the number of the letters a and b in the first n letters of 
x(r ) .  Moreover, we define 

no nb 
n-m rt n - m  n d,,(r) := lim - db(5) := lim - 

which are, respectively, the frequencies of the Ietters a and b appearing in x(r) .  Evidently, 
do@) f d b ( r )  = 1. Furthermore let p(Z) := dn(T)/db(Z), then 

db(T)(l + LL(Z)) = d,(r)  4- db@) = 1.  (30) 
Considering the substitution matrix M,, let A@) and i ( r )  be iti eigenvalues with 

A ( t )  > lA(Z)l. It is well known [25] that A(T) z 1 and (do(t) ,db(r))T is an eigenvector 
of MT belonging to A(r). (To simplify the notation in the rest of this section, if no confusion 
arises, we will omit the label r if possible.) 

With the notations as above, we define a sequence ( U , } ~ > ,  as follows: 

U,  := n, - nd. . (31) 
Then from (30) it is easy to check that 
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The atomic surface of the chain generated by the substitution rule r, which we denote by 
A(r) ,  is defined as 

A @ )  = (un(r)]n>l (34) 
where the horizontal bar denotes the topological closure of a set. 

Let #+(A) := sup,,>, U,, and #-(A) := inf,,>l U", then the extension of A is defined as 

(35) AB(A) := B+(A) - & ( A ) .  

Our purpose is to prove that Ae(A(r,")) = 1. The proof consists of five successive steps. 

(i) Because of the special relations (26), we can obtain the finite chain r,"(u) from the chain 
&(a) in the following way: replace U and b, respectively, by a and a"b in the chain &(a). 
(ii) We will determine B+(A) and & ( A )  by a similar technique to that in [41], which 
requires h >, 0. For any n 2 0 this requires det(&;)) = 1 and hence k should be even. 
For the case of k being odd we can take (r;)', which gives the same infinite chain as T;, 
but det(M(,;)z) = 1, thus A > 0. 
(iii) Let 

then 

and hence 

O+(A(t)) = lim @(r) 

&(A(r)) = lim O?(r) 
n-tm 

"-*CO 

If we know 6:) and Of), we can obtain inductively 62)  and 6"") by a method described in 
[411. 
(iv) We consider first U=. In this case 

(Notice that we have luk(a)l = fk.) 

In addition, 

(VI In view of (i), by using the facts Iux(a)l = fk, lux(b)l = fk-1, k 2 1, a simple 
calculation leads to 
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Its characteristic equation is 
1' - (fw-1 + f w - 3  + nfu-2)A + 1 = 0. (45) 

Hence the largest eigenvalue of M.;, reads 

A(r&) = (46) 

On the other hand, since (d,(r&), db(c&))T  is the eigenvector of A(r&), we find with 

fa-\+ fa-3 + n f x - 2  + J(fB-l+ f i 3  + n f 2 d 2  - 4 
2 

relation (30) that 

Since for any n 0, k 2 1 we have 

fit-1 f f 2 - 3  +nf2-2 -.2 < &fX-I f fa-3 f nf2k-2)2 - 4 < fw-1 + f a - 3  + llf?,k--z 

(49) 

(50) 

it follows from (46) that 

fz-1 + fw-3 + n f 2 - 2  - 1 < A(r&) < fa-1 + fa-3 + nf2-2 

1 Nr&) - f a - 3  fa--1 f ia - I  

fia-2 f2k-2 fw-2 f a - 2  

which yields 

+n- -  < <-  + n .  (51) - 
On the other hand, it is readily seen that 

1 f2-1 < 2 ,  I+---<- 
f a - 2  6 - 2  

n + l  <p(r&) c n + 2 .  
We thus obtain by (48) and (51) that 

In view of (i) again, from the inequality (53) we see that if we replace a and b by a 
and a"b, respectively, in o"(a), then O+(A(r&)) and e-(A(r&)) will be obtained in the 
same position as in the case of U'', up to a translation n. More precisely, by (43) we have 

(54) 
= f a - 2  + nfw-3 - (fa-3 - 1Mr&) I e%&) e:"(rG) = fa-1 - 1 + n f w - 2  - fw-zp(r&). 

By using (54) it follows from an analogous argument to that used in [41] that 

Ae(A(r&)) e+(A(r&)) -@- (A($ ) )  (55) 

Moreover, from (54) we have 
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We thus have 

Substituting (48) into (60), if we wish to prove that AO(A(r&)) = 1, it suffices to prove 
that 

By using the recurrent relation fk+z = fk+l+ fk and a known result about the Fibonacci 
numbers fa fa-2 + 1 = f&-], the equality (61) can be rewritten as 

f ~ + d A ’ ( % )  - &-I + fz-3 + nfz-zM(& + 1) = 0. 

A2(r&) - ( fw- l f  fa-3 + nfw-dA(r&) + 1 = 0. 

(62) 

(63) 
Notice that (63) is exactly the characteristic equation of the matrix Mr; (45). Hence we find 
that (61) is always satisfied, completing the proof that the extension of the atomic surface 

0 

If k = 1, then fzk--4 = 0 and (62) holds. If k )r 1, then fa-4 # 0 and (62) is reduced to 

AO(A(r&)) = 1, implying that Ae(A(r/)) = 1 for all k and n. 

4. Scaling properties of the energy spectrum 

For every substitution rule r we find a sequence of approximate periodic structures with 
corresponding energy spectra of the Schrodinger equation (7). In this section we will 
study the scaling behaviour of these approximate spectra, considering various invertible 
substitutions as well as a non-invertible one. 

For a given substitution 7; and approximation number 1, for each energy E the vector 
q ( E )  := F(r;)rro(E) is determined by successive application of the trace maps F, and F, 
occurring in F(r;)~ = F$. The first component of this vector determines whether an energy 
E occurs in the spectrum of the lth (periodic) approximation to the infinite quasipenodic 
chain generated by the substitution r / ,  starting with a single a. That is, the first component 
Ixl(E)[ < 2 (cf (9)). The initial conditions for this iteration process are 

ro(B) = ( E  - v.3 E - vb, (A% - Va)(A% - vb) -2) (64) 
i.e. a line parametrized by E on the invariant surface A = (V, - Vb)’. In all explicit 
calculations we have set V, = -Vb = 0.6. 

In figure 2 the energy spectrum for the first few (periodic) approximations of 
quasiperiodic chains using the substitution rules rp, r! and rd are depicted. Note that 
rf is the Fibonacci substitution rule. 

In the Fibonacci case, it was observed [3,5] that the substitution rule induces a band 
splitting that repeats itself at smaller scales in higher-order approximations. h figure 2 we 
observe a similar mechanism also in the case of other invertible substitutions. 

With the above observation, it is natural to do a scaling analysis of the central band. In 
studies of Fibonacci spectra, non-uniform scaling was found, giving rise to a limit spectrum 
that is a Cantor set with multifractal properties [4,9,111. 
t For all r,, n. E Aut(32) we have [26,321 Mq D M,, = MqmI and Fs o F,, = F,,., . Hence any [race map Fz 
(with r E Inv(S*)) can be Written as a composition of the [race maps F., F,, and 4, where F, is the F i b m i  
!sate map (14). F9 = F,, and F. : (x, y.  L) H @.r. 2). 
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Figure 2. The energy spectrum of (7) for the fint 
few periodic approximations to a quasiperiodic chain 
generated by the invertible substihltions (a) rp. (b) z: 
and (c)  4. V, = -Vb = 0.6. 

We will focus on the scaling behaviour of central band, i.e. we will compare the width 
of the central band in successive approximate spectra. In table 2 we present the scaling 
parameter a, i.e. the ratio of the width of the central bands at level 1 and 1 + 8 ,  as obtained 
numerically for different substitution rules z:. A step size 8 > 1 is sometimes required 
to circumvent spectra that have no central band (e.g. z:, zf, z;) or to ens& convergent 
scaling (e.g. 7:). 

Table 2. Scaling panmeter U of the centre band in approximate specha generated by invmtible 
substitution rules 7; (cf (25)) for various values of k and n. U is the ratio of the width of the 
centre bands of approximations I and I + S. Max 1 indicates the highest approximation used in 
obtaining the scaling results. 

k n S Max1 U 

1 0 3 13 5.618 & 0.007 
1 1 1 13 2.702 f 0.002 
1 2 3 6~ 80.4 f 0.5 
1 3 1 6 4.8702fO.OW4 
2 1 2 6 27.55 + 0.02 
2 2 3~ 6 375*5 
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The scaling of the central band of the Fibonacci spectra was found to be related to the 
largest eigenvalue of the Jacobian matrix of F,“ in (U. 0, 0), which lies on a 6-cycle of F, 
[5]. Note in this respect that volume preservation together with the invariant h (cf (19)) 
implies the eigenvalue spectrum to be of the form (1, p, p-l} (2. > 0 moreover implies that 

In 151, Kohmoto and Oono argue that the central band appears as the result of the 
intersection of the stable manifold of the 6-cycle with the initial line ro(E) .  To explain the 
other results of table 2, consider the set 

’ A:=lz,,Yo,z~.z-o,~-,,Z-,J (65) 
where x. = (a, 0, 0), ya = (0, U ,  0), etc. Considering the invariant surface of the trace map 
A = (V. - Vb)2 = U* - 4 > 0, these points are situated on the central part of the surface 
right between its four cones (for a picture of this surface see, for example, [5]). 

The set A consists of periodic orbits of FT for any t E Inv(S*) because &(A) = A, 
as can easily be verified from the fact that F, and F, map A onto itself. These periodic 
orbits may be written as permutation cycles, e.g. 

P E w. 

FA4 = (=‘7Yaz-a%zY-azrJ. (66) 
Now, let us investigate the eigenvalues of the periodic orbits of A and compare them 

F, ~w special class of invertible substitutions z; (25) we find 
to scaling faciors 01 of table 2. 

(67) 
giving rise to 24 different periodic orbit s@uctures within A. In table 3 we present the explicit 
orbits and their largest eigenvalues for the substitutions considered in table 2. Comparing 
table 2 and table 3 we find that in all cases the observed scaling coincides with the largest 
eigenvalue of a periodic orbit in A. 

k Fr[(A) = ( z a ~ a z - a z - a ~ - o z J  0 (z~Y~z-~YJ’  

Table 3. Periodic orbits of tnce maps of invertible substitutions 7; (cf (25)) their periods p ,  
their largest eigenvalue ~ ( a )  for general n, the value of S as used in table 2 ,  and lP/P(a)l for 
a’ = 5.44 for comparison with a in table 2 (with V. = -Vb = 0.6). Only periodic d i t s  within 
the set A (cf (65)) are considered. 

3 80.31 
+./(16a~-S606+49a4 C2F-41 ,, ~I I 

1 3 (Xa%) (z-eY-J 2 $pa4 - 8a2 + 2 i J ( 3 a 4  - Sa2 + 2)2 - 41 I 6.873 11 
(%) (z-‘.) 1 -a-- 1 4.87010 

2 1 (zaz-n) (=-azo) 2 fp- a’ - J(2 -a4)2 - 4 2 27.551 
(Yay4 2 1--202- J(1--202)2-1 2 19.709 

2 2 (xaz-.va) (z-4zoy-a) 3 $[Sa4 - 4a6 i 2 - J(9a4 - 406 + 2)2 - 41 3 375.61 I 

In table 3, note that 6 is not always equal to the period of the cycle that is related to 
the scaling factor 01, although one would expect them to be equal from the stable manifold 
argument. The reason for this is to be found in the symmetry properties of the periodic 
orbits. In the cases tp, r:, and tf, where S equals half the period of the determining cycle, 
the period-two orbits of F$ appear to be symmetric with respect to a symmetry of F$, 
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causing local dynamics near the two points to be similar and hence giving rise to a uniform 
scaling behaviour. 

In most cases the value of 8 needed to circumvent spectra without central bands 
automatically gives convergent scaling behaviour. Only in the case of 7: this does not 
happen: one is tempted to take S = 1 because in all approximations there is an odd number 
of bands and hence a central band. However, the determining period-two orbit is not 
syrmetric. As a result, if we take 6 = 1 we find 01 oscillating around the root of the largest 
eigenvalue. Taking S = 2 avoids the oscillation and we find 01 to be in correspondence to 
the eigenvalue. In the appendix the symmetry properties of the trace maps are discussed in 
more detail, in particular in relation to this problem. 

Considering the initial conditions ro(E) and the points contained in A, we find that z-. 
is closest to ro (E)  (in fact even near ro(0)). Hence one would expect the orbit containing 
z-. to determine the scaling of the central band. The results in table 2 and table 3 support 
this line of reasoning. 

In the earlier work of Wijnands [19], quasiperiodic chains generated by juxtaposition 
rules 

&+I = 5'"' &-I SO = b SI = ab" (68) 

with n = 0, 1 ,2 ,3  were studied. With different initial conditions (SO = b. SI = a) ,  these 
juxtaposition rules are equivalent to the invertible substitution rules 7;. The energy spectrum 
in successive approximations generated by the juxtapositution rules (68) is governed by the 
same trace maps as in the case of the substitution rules 7:. but (if n z 0) with initial 
conditions r&) different from (64). In the case n = 1 ,2 ,3  the scaling behaviour was also 
found to correspond exactly to the largest eigenvalue of periodic orbits in A. However, in 
the cases n = 1 and n = 3 the scaling of~the central band is dominated by the eigenvalue 
of a 2-cycle and, respectively, a 4-cycle, i.e. not the fixed point, respectively, the 2-cycle 
as found for the substitution rules (cf table 2 and table 3). 

We would l i e  the reader to note that it is not clear to us why precisely some orbit in 
A (and not some other periodic orbit) determines the scaling behaviour of the central band. 
The argument in [5] is mainly heuristic to our opinion. Nevertheless, it is remarkable that 
in all cases the scaling behaviour can be explained with periodic orbits in the set A. A 
profound discussion of this phenomenon is beyond the scope of the present paper. Note that 
in a slightly different model [SI the scaling behaviour of the central band can be explained 
rigorously because the initial condition ro(0) coincides with the point 8-.. 

In order to make a comparison between scaling properties of the spectrum of 
quasiperiodic chains generated by invertible and non-invertible substitutions?, we calculated 
the energy spectrum of chains generated by the non-invertible substitution rule 

5 =-(a2b, ba) (6% 

where G is a so-called Fibonacci-squared substitution [31] since 

Mz = M,,.M, (70) 

with U denoting the Fibonacci substitution rule. Because of (70), 6 obviously possesses the 
Pisot property and has det& = 1. Therefore it generates a quasiperiodic chain of rank-2. 

The atomic surface of the quasiperiodic chain generated by 6 has a fractal atomic surface 
with A0 z 1 [31]. Thus this chain cannot be generated with the method of cut-and-project. 

t For a comparison with scaling propeaies of chains, generated by a substitution ~ 1 %  that are neither periodic 
nor quasiperiodic see, for example. [io]. 
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Figure 3. The energy speceum for the first few periodic approximations to a quasipiodic 
chain generated by the non-invenible substitution :(a) (cf (69)). 

I[ 

B 

0.1 

Figure 4. Total bandwidth (E)  against number of "8 N in the unit cell for the invertible 
substitutions cp. r:, r: and the non-invertible substitution Z. 
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In figure 3 we have plotted the energy spectrum for the first few approximations #(a). 
One immediately observes a striking difference: in the case of the non-invertible substitution 
the width of the energy bands tends to zero much more quickly than in the &se of the 
invertible substitutions in figure 2 (particularly in comparison to the case of rp).’ Moreover, 
the typical large gaps in the Fibonacci spectrum are absent in the spectrum of 8. 

In figure 4 the total bandwidth B ,  i.e. the Lebesgue measure of the energy spectrum, 
is set out on a double logarithmic scale against the number of atoms N of the unit cell in 
the periodic approximation. In the case of the invertible substitutions rf, r: and rj we find 
that B - N-B with j3 = 0.347 zk 0.005. The non-invertible substitution 3 clearly shows a 
different behaviour. 

An explanation for this difference can be found on the level of the trace maps. The 
speed with which B approaches zero is roughly speaking determined by the escape rate of 
points on the inner domain of the phase space of the trace map, and can be interpreted as a 
diffusion coefficient. As mentioned before, the dynamics of the trace maps of non-invertible 
substitutions differs in many respects from the dynamics of invertible substitutions. Whereas 
in the case of~invertible substitutions the diffusion process, governed by the hyperbolic points 
on the invariant surface, is found to be uniform, the (in general) dissipative dynamics of 
trace maps of non-invertible substitutions induces a different diffusion process, giving rise 
to different scaling behaviour. 

5. Summary and concluding remarks 

In this paper the construction of quasiperiodic chains using substitution rules has been 
discussed. It was found that chains generated by invertible substitution rules share their 
typical properties with the well studied Fibonacci chain. In particular, we conjecture that 
quasiperiodic chains generated by a substitution rule can be obtained also with the method of 
cut-and-project if and only if the substitution rule is invertible. This conjecture is supported 
by an explicit calculation of the atomic surface for a two-parameter family of invertible 
substitutions. 

Following the energy spectrum of a quasiperiodic tight-binding Hamiltonian we also 
find that the spectra of quasiperiodic chains generated by invertible substitutions behave 
Fibonacci-like. In particular, the scaling of the central band can be explained by the largest 
eigenvalue of the periodic point (0, 0, -a) and the total bandwidth B shows universal 
scaling behaviour. Quasiperiodic chains generated by non-invertible substitution rules show 
a rather different behaviour. This is for instance illustrated by the scaling properties of the 
spectrum. The differences between spectra of quasiperiodic chains generated by invertible 
and non-invertible substitutions can be inferred directly from the spectra-determining trace 
maps. In the invertible case the maps preserve the volume and a one-parameter family of 
surfaces, giving rise to two-dimensional measure-preserving dynamics. However, in the 
non-invertible case the trace maps are truly three-dimensional and (in general) dissipative. 
One consequence of this difference is nicely s illustrated in figure 4. These findings are 
confirmed by an independent study of Janssen [42]. 

Many other properties of the Fibonacci chain were studied over the years. which we 
have not discussed in this paper. For example, the energy spectrum of the tight-binding 
Fibonacci Hamiltonian has been shown to form a purely singular continuous Cantor set of 
Lebesque measure zero [28-301. Another property which has been studied extensively is the 
nature of the electronic wavefunctions, in particular whether the wavefuctions are extended, 
localized or whether they have a different nature [7,8,11]. For these and all other properties 
of physical interest we conjecture their typical behaviour to extend throughout the class of 
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quasiperiodic chains generated by invertible substitutions. Quasiperiodic chains generated 
by non-invertible substitutions have a different nature. 
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Appendix. Symmetry properties of trace maps of invertible substitutions 

The trace map F, of an invertible substitution r E Inv(S*) is a dynamical system in R3. Such 
maps are volume preserving and moreover have a constant of the motion A (cf equation (19)) 
giving rise to a foliation of the phase space. In case A > 0, as in the tight-binding problem, 
the constant of motion is a non-compact surface with tetrahedral symmetry consisting of 
four cones connected to each other via a centre part. In this appendix some symmetry 
properties of the dynamics of the trace maps of invertible substitutions are pointed out, in 
particular for the special class introduced in section 3, and we discuss some consequences 
for the scaling behaviour of the centre band of the energy spectrum. 

Let us first introduce the concept of %-symmetry in dynamical systemst. Consider a 
dynamical system wh&h is an invertible map L : Q H Q, ?en we say that an invertible 
map U : Q H Q is a k-symmetry of L if t is the smallest positive integer such that [43] 

u 0  L I ~ u - ~ =  L I .  (AI) 

1-symmetries are usually called symmetries. In fact, E-symmetries of L are symmetries of 
LL, but not viceversa. 

On the set of all symmetries of L' (the symmetry group of LL), denoted 4. we define 
a map 4~ : 4 H 4 that acts on M E 4 as 

( A 3  

As such, %-symmetries of L correspond to %-cydes of 4 ~ .  
It has been realized recently [43,44] that trace maps of substitutions T E Aut(&) 

possess f-symmetries. Let us consider these f-symmetries of trace maps of invertible 
substitutions 5 E Inv(S';). In particular, let us focus on f-symmetries of trace maps of 
invertible substitutions that are elements of the group PA of polynomial maps in R3 with 
integer coefficients that leave the surface A (19) invariant. In [34] it has been shown that 
this group, independent of the value of A, is given by 

(A3) 

where F,, Fe and Fp are the trace maps of the corresponding substitutions in Aut(&), 
with Fe and Fa as given in section 4 and Fp : (x,  y, z )  H (x. y,xy - z ) .  In (A3). Zij 
denotes the reflection in the line i = j = 0 and f i j  is the reflection in the plane i = j, with 
i ,  j E [ x ,  y, z )  and i # j .  In fact ( I x y ,  Pxy,  Pyz) is the tetrahedral group. 

t To avoid confusion we use e instead of k in the symmeuy propew because k already occurs as a Label of the 
spedal class of inveriible substitutions. 

@ L ( ~ )  = L O  M o L - I .  

'PA = (Fa, Fe, Fa, b y ,  Iyz. Pzy, Pyz) 
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Let B = ( Z x y ,  Zyz) .  Then, C is a i-symmetry group of Fc, for any 5 E Inv(S*), where 
I E [1,2,3} (cf 143,441). In particular, +' induces a permutation~on E, among its three 
non-trivial elements. Writing the action of dFr on Z in a cycle notation we obtain 

'$F.('c) = ( ~ . y ~ y z ~ x z )  @ F s w ( X )  ( ~ x y z x r )  (A41 
yielding 

d F < ( Z )  ( Z ~ y Z y z ~ x z ) ~  ( z x y z x r ) n .  . (.w 
Because the group I: is closed under 4~ it is called a i-symmetry group of F.;. Here, 

= 3  i f k  # 0 (mod3) and n is even, = 1 if k = O  (mod3) and 
n is even. 

In table A1 we give for the same values of n and k as used in section 4, $F$(C) and 
F$(A), with 6 as in table 2. 

7; 

= 2  if n is odd, and 

Table Al .  The action of @F.,. on the p u p  E and the orbits of F$(d) .  

1 0 ( r x y ~ y J X z )  3 (Z&-o) (YnY-.) (z.z--o) 
1 1 ( l y z l x z )  (&y) 1 (Zn2-a) (Zaara) (Z-aY-0) 
1 2 ( L y C y . b )  3 ( Z 0 Z - A  (YaY-.) (4%) 
1 3 (lyrGd ( l y )  I (ZoYa) (Z-aY-J (4) (I,) 
2 1 (IXYlYJ (L.) 1 (Zoz-o) (Z-da)  (YaY-d 

(Gr) 6) (2.) (=-a) (U-<) (Z-J 

2 2 ( L y b ) ( l y . )  3 (Z'J (Y.) (2.) @-'A (Y-d (z-0) 
2 

From table AI we find in the case of -cp and -c: that the scaling determining two-orbits of 
F$ are symmetric. Moreover, their two points o and y are related through a symmetry M, 
i.e. Mz = y. Hence, the dynamics near o is equivalent to the dynamics near I: in case we 
follow such a symmetric periodic orbit, we find uniform scaling behaviour. In the case of 
rj we find the determining two-orbit zaz-a (or z-,z,) to be asymmetric. This asymmetry 
causes the oscillatory behaviour in the scaling constant that is found if one considers 6 = 1 
in stead of 8 = 2. 

Note that in this appendix we confined the discussion to %-symmetries, although lrace 
maps are well known to also possess reversing hymmetries (cf r43.441). Although many 
trace maps of invertible substitutions are reversible, there seem to be ones that possess 
no reversing symmetries at all [MI. However, the physical relevance of these reversing 
symmetries, e.g. for the energy spectrum, are as yet unclear. 
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